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ABSTRACT 

A rather general theory of nonlinear computational stability is reported. Instability is caused by both spatial 
and temporal high frequencies that, if not present initially, will appear from nonlinear interactions. It appears that 
through simple remedies relative stability, if not perfect stability, can be achieved. 

1. INTRODUCTION 
Several ideas are gathered in this manuscript to form a 

basis for a rather general theory of computational stability 
of difference approximations to the nonlinear meteoro- 
logical equations. Although we discuss here only applica- 
tions to difference systems centered in time and space, 
the approach can be used to investigate stability properties 
of other classes of difference systems. The approach can 
also be extended to other areas of mathematical physics, 
which explains the generality of the title immodestly 
borrowed. 

So far, the theory has explained the relative stability of 
space-averaged difference forms, the stability of certain 
integrations of the pure gravity wave, and the observed 
association of instability with high frequencies in space 
and time. Finally, we have used the theory to devise a 
new difference scheme for which computational stability 
was predicted successfully. We have now hardly begun to 
approach the full set of meteorological equations with our 
new ideas. Much remains to be done before they can be 
fully exploited in large operational atmospheric prediction 
models. 

In  outline, the paper: 
1) develops the notion of aliasing, which allows us to 

restrict our attention to  oscillations two increments and 
longer ; 

2) develops the notion of “folding,” an idea related to 
aliasing, which allows us to  regard high frequencies as 
low frequencies modulated by the two-increment 
oscillation; 

3) discusses the origin of temporal high frequencies (so- 
called computational mode) as well as the temporal low 
frequencies (so-called physical mode) in numerical solu- 

tions of the centered difference advection equation (the 
computational mode in the more general sets of hydro- 
dynamic equations must feed back into the integration 
through undifferentiated factors, such as the advecting 
velocity; this feedback, along with the feedback of spatial 
high frequencies is, we claim, a root cause of nonlinear 
instability) ; 

4) analyzes linearized equations for nonlinear computa- 
tional stability criteria (the linearization consists of ne- 
glecting low-frequency variations in undifferentiated 
coefficients; in the case of high frequencies, only the 
modulating factor is therefore retained) ; and 

5) demonstrates a simple technique for achievement of 
stability for a nonlinear set. 

The theory is not complete, having been developed 
through linearization techniques; and, therefore, we are 
dealing with relative stability and necessary, not su$cient, 
conditions for stability. The one reported experiment, 
designed for stability according to the theory, however, 
did exhibit perfect stability. 

The reader will recognize that many of the ideas are 
not original, but they are reported for completeness. The 
analysis of instability due to temporal high, spatial low, 
frequencies is due to Robert (1969) and to our knowledge 
is new. Indeed, his analysis motivated us to develop the 
theory at  this time. Also to the best of our knowledge, 
this is the first time all of these ideas have been brought 
together into so general a theory of nonlinear computa- 
tional stability. 

Before closing the introduction, a word on notation is in 
order. For convenience in writing, we have adopted the 
following notation. Let a dimension, x, be divided by grid 
points into equal increments Ax. The grid points will be 
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serially numbered, . . . 0,  1 , 2 ,  . . . , j - 1, j ,  j + 1, . . . . The 
operator ( )z applied to an arbitrary variable j is defined 
bY 

1 
. f z = z  (Jr+t-fr-t). 

- X  
The operator ( ) isdefined by 

As a slight generalization, the prefix "2" to an operating 
variable extends the action of the operator to two incre- 
ments, thus: 

1 
f22'2.j (fj+l-fj-d 

and 

ja= a ( j j + l + j j - l )  - 

j 2 x = 7 s ,  

Note that 

and 

It will aid in following the derivations in sections 5 and 6 
to understand that 

-2 -22-2 - x - a  
( j d z = f  s z + f x g  * 

Further, note that a t  grid points ( j  an integer) 
- 
( e f p f )  f =O 

-22 
(efvf) =-eiuf 

and 

where 
T i =  J-1. 

9. ALIASING 
Consider a sinusoidal oscillation with k cycles in J 

equal increments, Ax, of any dimension x, 

. 2 r k j  F=exp a - J 
I 

where j=x/Ax. We first show, as is well known, that if the 
wavelength, J / k  increments, is less than two, the oscillation 
cannot be distinguished from one whose wavelength is 
longer than two increments. This phenomenon is called 
(( aliasing." 

To illustrate, in equation ( 1 )  let J/k<2 (k/J>%).  
Form any integer, exp a m i =  1, and at grid points, there- 
fore, we may write 

F= exp 2ri  (S- m)j. 

Thus an integer, m, may always be chosen so that 

>2. 

-J/k'  -k'lJ 

. 5  k l 3  

t 
4 3 2 .  5 2 Jlk 

* 

.25 

FIGURE 1.-Graph of k'/J= k /J ->$ .  

This is the basis for the custom of regarding the dis- 
crete spectral distribution as extending from the infinitely 
long, k=O, to only the two-increment-long, k= YJ. 

3. "FOLDING" 
We next divide the spectrum into two equal parts, Pow 

frequency and high frequency. The low frequency will be 
defined by J l k 2 4  and the high frequency by 2 5  J l k 5 4 .  
We have ambiguously included the four-increment oscilla- 
tion in both groups, which here is no cause for concern 
since its categorization is irrelevant to the problem a t  hand. 

We now show that any high-frequency oscillation may 
be expressed as a low-frequency oscillation modulated by 
the highest frequency oscillation, J / k = 2 .  We may rewrite 
equation (1) as 

where 
F=Ftf  F' ( 2 )  

.%(k-+J)j  
J F"=exp irj and Ff=exp a 

F" is the highest frequency oscillation, with length of 
two increments, for if we define k" by 2rk"j/J=?rj, then 
J/k"=2.  Indeed, a t  grid points, F"=(-1) f .  In  the case 
of F', if we define k' by 2rk'j/J=2r(k-%J)j/J1 then 
k' /J=(k/J) - j I .  Now if 2<J/k<4,  F is therefore high 

frequency, then 4<lp l<  00 and F' is therefore low fre- 
quency. It should further be noted that the higher is the 
frequency k / J  of F, the lower is the frequency k'/J 
of F'. For example, as indicated in figure 1, a three- 
increment oscillation "folds" into n modulated six- 
increment oscillation; a two-and-one-half-increment 
oscillation folds into a modulated 10-increment oscillation. 

4. THE COMPUTATIONAL MODE 
Generally, all spatial frequencies from the shortest, 

two increments long, to the infinitely long are present in 
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integrations of the nonlinear equations of meteorological 
hydrodynamics and thermodynamics. If they are not 
there initially, they develop through nonlinear inter- 
actions. Thus, in space we must deal with both high and 
low frequencies. 

It is important to establish that both high and low 
frequencies are also present in time. There will be nothing 
new in this stage of our argument, but for the sqke of 
completeness, we establish it here through a simple 
example. 

Consider a simple advective differential equation 

ajlat +U (ajiax) =o 
where f is the dependent variable, t time, x distance, and 
U a constant advecting speed. Consider its centered 
difference form 

j :  +u%= 0. (3) 

Solution of equation (3) may be expressed by sums of the 
components 

j,, , = A ~ ,  , exp 27ri (E+$) 
where p and r are integers and NAt and JAx are the funda- 
mental period and wavelength, respectively. Substitution 
into equation (3) yields the frequency equation 

. 27rp UAt . 2w sin --+- sin -=O. hT Ax J 

We first note, as a matter of course, that since we must 
account for OSr/J<)h, that -15 sin(2?rr/J) I +l 
and, therefore, it is necessary and sufficient that 0 I 
(UAt/Ax)z < 1 to avoid the instability analyzed by 
Courant et al. (1928) (CFL). With the CFL criterion 
satisfied, we next note the presence of two solutions, one 
the so-called physical mode, p', for which 0 I q'/N 
I j4 and which is therefore low frequency by our defini- 
tion. The other, the so-called computational mode, q", 
yields the same sine, being related to p' by 27rp"/N=?r 
-(27rp'/N). Any multiple of 27r may be added to the 
right-hand side, but this would result in aliasing into 
either p' or q". The relationship between p' and q" 
together with the limits on p' gives j i 5 p"/N 5 x. The 
computational mode, p", is therefore high frequency 
according to our definition. 

In a calculation with the linear difference equation (3), 
it  is well known that the amplitude of the computational 
mode may be controlled, indeed eliminated entirely, 
through an appropriate choice of the two necessary sets 
of initial data at  two levels of initial time. In  practice, 
when we deal with the corresponding nonlinear sets of 
equations, it is customary to start the integration in time 
with a single distribution of data in space, and to derive 
a distribution at  the next level in time by means of a 
difference equation centered in space but uncentered, 
forward, in time. Such a procedure does not eliminate the 
computational mode in the linear case, but analysis shows 

that the procedure makes its amplitude very small. 
Experience, on the other hand, has almost universally 
been that the nonlinear centered difference equations 
eventually develop large-amplitude temporal h g h  fre- 
quencies. We here interpret this phenomenon as develop- 
ment of the high-frequency, computational mode (a 
linear concept) through nonlinear interactions. 

5. NONLINEAR INSTABILITY 
In  meteorology we deal with a whole set of equations, 

a t  least six in number in the more general cases, and the 
advecting components of velocities themselves are pre- 
dicted by equations containing terms like those of 
equation (3) inf. 

Therefore, we should expect that even though the in- 
tegration is begun with only low frequencies in the ad- 
vecting velocities, high frequencies will develop, in both 
space and time. I n  equation (3), the advecting speed, 
U, is constant. It is fair to interpret its analysis not only 
in terms of precisely constant U but also in terms of low 
frequencies in U, oscillating in both space and time. I n  
the latter case the analysis should be regarded as holding 
for intervals in space and time that are short compared 
to the length of the wave in space and time, short enough 
so that variations of U are very small within the intervals. 

With this idea in mind, we now turn to analysis of 
cases wherein the advecting speed is not confined to low 
frequencies but includes high frequencies as well. I n  in- 
cluding high frequencies we will think of them as folded 
into low frequencies modulated by the highest, two- 
increment-long frequency. We will neglect the variation 
of the modulated low frequency, for example, F' in 
equation (2), and include in the analysis only the 
modulation itself, for example, F" in (2). 

Consider the difference equation 

J : + ( ~ , + ~ ~ e f l j + ~ ~ e f ' n + ~ ~ e i ~ ( j + " ) ) ~ ~ = ~  (4) 

where U,, Ul ,  U2, and U3 are constant. Application of the 
operator <>f to equation (4) yields 

-22 
J : : + [ ( ~ , - ~ , e i r ( j + n ) )  - ( ~ ~ e i ~ ~ - ~ ~ e i ~ n ) ] j  ZZ- -0. 

-1  
Application of the operator ( ) t  to  equation (4) yields 

-t 1 
f l l +  [ (Uo-U3eir(l+")) + (Uleiu~-U2eiun )If::=o. 

Elimination of 3:; from the latter pair yields 

7:;- [ ( U ; - W O U ~ ~ S ~ ( ~ + ~ )  +u,z) 
- (~;-2U,U~eir( i+")  +u@lf::=o. (5) 

This is a second-order difference equation in which 
differences are taken over double increments in both 
space and time. There are therefore four interleaved sets 
of grid points in the 2-, t-net, on each of which the solution 
of the second-order equation (5)  is independent of the 
other three. We note, on the other hand, that the fir& 
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order differenci? equation (4) has only two sets of grid 
points, each carrying P solution independent of the other. 
The two sets of (4) are interleaved in checkerboard fashion: 
for one set j+n is even, for the other set j+n is odd. The 
four sets in the case of the second-order difference equation 
(5) can be divided into two pairs, each pair constituting 
one of the sets of the first-order equation (4). 

We therefore lose no generality by considering two 
equations, one for even j+n, 

and one for odd j+n 

These are simple wave equations whose stability criteria 
are well known. For the former the stabiIity criterion is 

For the latter the stability criterion is 

Since both sets of grid points are to  be considered, both 
criteria must be satisfied for stability. 

There is a simple historical sequence behind (6). Courant 
et al. (1928) showed the right-hand condition, which 
depends on the magnitude of At. Their analysis also implied 
the left-hand condition in a trivial way for Ul= Uz= U3=0. 
Phillips (1959) captured the essence of the left-hand 
condition for Uo= U2=0, and later Richtmyer (1962) for 
only U2=0. For example, consider the equation Richt- 
myer analyzed, which may be written U:-U“”;;;=O. From 
the result of his anaylsis, U2’=U0+U, cos rj+U, cos 
r( j+n), where lUol is his JV(, lull is his )4IA+BI, and 
lU3i is his >hIA-BI. His criterion for stability is identical 
to  our criteria (6) without U2, but which he could have 
included by allowing his V to be time dependent. I t  is 
clear that, for a self-contained nonlinear equation such as 
his, our generalization applies to the interaction of 
packages of very short and very long waves with a package 
of middling, nearly four-increment-long waves. Robert 
(1969) showed the left-hand condition for nonvanishing 
U2, but with Uo=Ul=U3=0. Finally, the paper in hand 
brings all combinations of high and low frequencies in 
space and time into consideration, which allows interest- 
ing, rather general interpretations of experience and, we 
trust, the invention of specific stabilizing devices. 

The relative stability of difference systems, in which 
advecting velocity components have spatial high- 
frequency smoothing operators on them, is explained by the 
analysis. The smoothing operators effectively suppress the 
terms in (4) with coefficients 77; and U3, so that the criteria 
(6) reduce to 

0 5 (At/AX) ’( Ui- Ug) < 1. 

At the same time, the.uncentered, forward start custom- 
arily used makes the amplitude of the computational mode 
small initially. Thus U2 is initially small, and our criterion 
therefore indicates stability initially. Generally instability 
eventually sets in, which we interpret as an eventual 
growth of U, to levels violating the left-hand inequality 
of the criterion, and perhaps later the right-hand side. 

For even greater stability, if not perfect stability, not 
only must the spatial high frequencies be suppressed, as 
with smoothing operators on advecting coefficients in the 
equations, but also the temporal high frequencies must be 
similarly suppressed. The analysis in the next section on 
the gravity wave indicates that these remarks apply not 
only to coefficients of advecting velocity but to  undiffer- 
entiated coefficients generally. 

6. THE GRAVITATIONAL OSCILLATION 

Long unexplained has been the perfect computational 
stability of certain integrations of the isolated gravity 
wave. Consider the set of equations for an incompressible 
homogeneous fluid under the hydrostatic approximation 
and with slab symmetry: 

and 

au -+u au -+g  ah -=o 
at ax ax 9 

ah ah au -+u -+h -=O,  
at ax ax 

a v  a v  -+u at -=o. ax 

Were, x and t are the horizontal space and time coordinates, 
u and v the x and y components of velocity, y being the 
other horizontal space coordinate, h the height of the 
free surface, and g a constant gravitational acceleration. 
The set is a special case of the full set in two spatial 
dimensions, in which u, v, and h are not functions of y. 
It can easily be shown that, if such a condition prevails 
at  any instant, it prevails for all time. 

The so-called semimomentum form has always exhibited 
perfect” stability-neither amplification nor damping- 

for u and h (Shuman and Stackpole 1968). Note that 
the first two equations (7a) and (7b), of the set are com- 
plete in themselves, being two equations in the two 
dependent variables, u and h. In  the set (7), therefore, 
the gravity wave is isolated from other mechanisms. 

We have recently experimented numerically with the 
third equation (7c) as well as the first two, (7a) and (Yb), 
and v has generally exhibited instability. The experi- 
ments mere with the so-called semimomentum forms, 
that is, 

(i 

- 
( 8 4  

-4 -x 
ut+u u,+gEf=o, 

and 
-X 

4 vt+UXv,= 0. 
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The instability in v is explained by Robert (1969) and the 
analysis in the preceding section. By reason of the )' 
operation on the advecting velocity in (Sc), Ul=U3=0, 
and the stability criteria (6) reduce to  the single criterion, 

0 5 (At /Az)  ' (Ug - U,") < 1. 

Since in the calculations u varies about zero, it is more 
than plausible that Uo is small and the left-hand in- 
equality is somewhere sometime violated. Robert's (1969) 
analysis mas for the case Uo=O as well as Ul= U3=0 
and showed unconditional instability. 

The perfect stability of the gravitational oscillation, 
however, is not explained by our analysis of the advective 
equation. For the explanation we will perform an analysis 
of the two gravity wave equations. 

Similar to the advective equation (4) we consider 

( 9 4  
-1 
ut +uu:+gi: = 0 

h:+UE:+Hu:=O (9b) 
- and 

where 

and 
U=Uo+Ulezxj+ U2e*rn+U3ez*('+n) 

H= Ho+ Hlezal+ H2ezxn+ H3ear(3fn). 

U and H correspond to the undifferentiated u and h 
in equations (7) .  Since both u and h can be expected to 
contain high frequencies, these have been incorporated 
in U and H as above. 

Following the derivation in section 5, we apply the 
operator <: to (9a) and (9b), then eliminate the resulting 

. uZl and h:: from the resulting set by first applying the 
operator fi: to (sa) and (9b) and then substituting. We 
thus obtain 

and 

where 

-2 2 

- 2 2  -22 -22 

u~~-Au22-Bh2,=0 (loa) 

h~1-C~,,-Dh2,=O (lob) 
- 2 1  -22 -22 

-21-22 -22  
A=U U +gH , 

-21-22 -22-22 
C=U H +U H , 

and 
-21-22 -21 

D=U U +gH . 

Multiply (lob) by an arbitrary variable E and add to 
(loa), obtaining 

Then 
-1 1 
(E  h) =EL: 

and. 
(Eh),Z,Z= Ex::. 

We may therefore write 

( u + Eh)  - ( A  + CE ) (u + E h) 5: = 0. 

This is a wave equation, and if A + CE is constant, the 
stability criterion is 

0 5 (At/Az) ' (A  + CE ) < 1. (13) 

We now show that A + CE may be regarded as constant 
for each of two sets of points, as in section 5,  for the set 
where j + n  is even and for the set where j+n is odd. 
After solving equation (12) for E, expandkg the operators 
in (ll), and substituting, we find for evenj+n 

A+ CE=(Uo-U3)'- (Ui-U,) '+ g( Ho-H3) 

As in section 5, we must deal with both sets of grid points, 
so both definitions of A + CE must be considered for the 
stability criterion (13). 

The explanation for the relative stability of the pure' 
gravity wave equations (sa) and (8b), compared to pure 
advective equations, for example (Sc), lies in the over- 
whelming role of the mean height, Ho, of the free surface 
in the definition of A+CE. 

7. A DEMONSTRATION 

A theory that explains observations satisfies our 
curiosity, but its proof must be given by successful predic- 
tion, and only through prediction does it become useful. 
Having developed the theory to this stage, we ventured 
a prediction, that if the spatial and temporal high- 
frequency modes were suppressed in the undifferentiated 
factors in the equations, we would achieve relative, if 
not perfect, stability. 

Such suppression could be accomplished either by 
smoothing in space and time the fields of dependent 
variables, or by inserting in the equations devices which 
suppress high frequencies in the equations but retain their 
presence in the fields. The former, we felt, would not be 
as convincing a test as the latter and in any case might be 
difficult because the smoothing would have to be adjusted 
to the growth of high frequencies through nonlinear 
interactions, something we know little about. We therefore 
invented a "star" operator ( )*=ji[( ) n - l + (  )J, which 
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is simply an average of the given function at  the current 
and immediately prexious time steps. 

We predicted a t  least relative stability for the system 

24- 

- 
- 

-2 -z 
u* -t u u,+g~I=o, 

2 -1 - 
-1 -2 
h ,+u h, + ~zuz=O, 

vt+u* v,=o. 

and - 
--I -2 

20- This set of three equations differs from the former set (8) 
only by the addition of the star operator on u in (14c). It 
is an important, though modest, test. 

The results shown in figure 2 are from integrations of 
both (8) and (14). Following Shuman and Stackpole 
(1968), the initial data were 

- 

8 - 
23 

r = l  
u=U sin(mj/24), h=H, tind 

23 

r = l  
v= V cos(mj]24), 

where U=V=8.5 m sec-’ and H=‘7620 m. .The-region of 
integration extended fromj=O to j=24. At each boundary, 
u= tizz= h22=v2z=0, as boundary conditions throughout 
the integration. Data a t  the first time level after intital 
time were derived by a forward time step. The time step 
was 10 min, the space increment 381 km. 

As before, u and h behaved with perfect stability, 
which we have explained but had not predicted. In  the 
experiment with (14), v also exhibited perfect stability, as 
shown in figure 2. Since we had predicted stability for v, 
this is a substantiation of the theory. 
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